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Introduction
Let k be a field, Q = k[x1, . . . , xn], I ⊂ Q a monomial ideal generated in degree
≥ 2, and R = Q/I. Understanding TorQ

• (R, k) is a rich area of research in
commutative algebra. It can be computed by taking the homology of the Koszul
complex of R:

R ∂←−
1∧

Rn ∂←−
2∧

Rn ∂←− . . .
∂←−

n∧
Rn ← 0

∂(f̄ ei1 ∧ · · · ∧ eid) =

d∑
j=1

fxijei1 ∧ · · · ∧ êij ∧ · · · ∧ eid

The exterior algebra structure on the Koszul complex extends to an algebra
structure TorS

d(R, k) ·TorS
d′(R, k) ⊂ TorS

d+d′(R, k) given by, e.g. [f̄ ei][ḡej] = [fgei ∧ ej]

This algebra structure is important in the study of (infinite) resolutions over R.
When the product (+higher order products) is trivial, I is called Golod, and
resolutions over R can be computed in terms of (finite) Q-resolutions. Our goal is
to understand the vanishing of this product when f , g are monomials.
A monomial cycle of the Koszul complex is a cycle that can be written as
ūei1 ∧ ei2 ∧ · · · ∧ eid where u is a monomial of Q. In other words,
u ∈ I : (xi1, . . . , xid). A product of monomial cycles is again a monomial cycle, so
understanding when a monomial cycle is a boundary tells us when a product of
such cycles is a boundary.

Main Theorem
Theorem. A monomial cycle ūei1 ∧ ei2 ∧ · · · ∧ eid is a boundary if and only if u ∈
Bn,{i1,...,id}

I .

Bn,{i1,...,id}
I is an ideal we introduce called the boundary ideal. The combinatorics of

full simplicial matroids give formulae for computing boundary ideals.

Full Simplicial Matroids

To any set of vectors over a field, we can associate a matroid, which keeps track
of the subsets of those vectors which are (in)dependent. The dependent sets which
are minimal with respect to inclusion are called circuits.
The full simplicial matroid Sn

d is a matroid associated to an n-simplex. The
differential mapping d-faces to (d − 1)-faces of the simplex is a matrix. The full
simplicial matroid Sn

d is the matroid corresponding to the row vectors of that
matrix.

Figure: The matrices corresponding to the full simplicial matroids S4
1, S4

2, and S4
3,

respectively.

Boundary Ideals

The boundary ideal associated to a subset A of {1, 2, . . . , n} of cardinality d is

Bn,A
I :=

⋂
C a circuit of Sn

d
such that A∈C

∑
B∈C

xB\A[I : xA\B]

where xT :=
∏

t∈T xt. For example, the circuits of S4
1,S4

2, S4
3 are on the bottom left. So,

B4,{1}
I = I + x2[I : x1] + x3[I : x1] + x4[I : x1] = I + (x2, x3, x4)[I : x1]

B4,{1,2}
I = (I + x3[I : x2] + x4[I : x2])↭ {12, 13, 14}

∩ (I + x4[I : x2] + x3[I : x1] + x3x4[I : x1x2])↭ {12, 14, 23, 34}
∩ (I + x3[I : x2] + x4[I : x1] + x3x4[I : x1x2])↭ {12, 13, 24, 34}
∩ (I + x3[I : x1] + x4[I : x1])↭ {12, 23, 24}
= I + (x3, x4)[I : (x1, x2)] + (x3x4)[I : x1x2] ∩ (x3[I : x1] ∩ x4[I : x2] + x3[I : x2] ∩ x4[I : x1])

B4,{1,2,3}
I = (I + x4[I : x3]) ∩ (I + x4[I : x2]) ∩ (I + x4[I : x1]) = I + x4[I : (x1, x2, x3)]

Matroid-Boundary Ideal Dictionary

Matroid Circuits Boundary Ideal
Sn

1 {1, 2, . . . , n} Bn,{1}
I = I + (x2, . . . , xn)[I : x1]

Sn
2 2-color graphs formula for Bn,{1,2}

I

Sn
3, . . . , Sn

n−3 unknown, characteristic dependent [1] [4] Bn,A
I is characteristic dependent

Sn
n−2 complements of graph circuits formula for Bn,{1,...,n−2}

I

Sn
n−1 subsets size 2 Bn,{1,...,n−1}

I = I + xn[I : (x1, . . . , xn−1)]

Sn
n none Bn,[n]

I = I

Figure: The circuits of the full simplicial matroid S4
2 containing 12; they are the two-color graphs

on four vertices where 1 and 2 are different colors. Alternatively, they are the complements of the
circuits (in the sense of graphs) containing the edge 34.

Figure: The circuits of the full simplicial matroid S5
3 containing 123; they are the complements of

the circuits (in the sense of graphs) on five vertices containing the edge 45.

Consequences
Theorem. Products of monomial cycles [ūe1 ∧ · · · ∧ ed′][v̄ed′+1 ∧ · · · ∧ ed] vanish if
and only if the following inclusion of ideals holds:

[I : (x1, . . . , xd′)][I : (xd′+1, . . . , xd)] ⊂ Bn,{1,...,d}
I

In four or fewer variables, I is Golod if and only if all products of TorS
≥1(R, k)

vanish. In fact, we prove that it suffices to check only products of monomial
cycles. We thus prove the following theorem:
Theorem. I is a monomial Golod ideal in four variables if and only if the following
inclusions hold under all permutations of the indices:

[I : x1][I : (x2, x3, x4)] ⊂ I

[I : (x1, x2)][I : (x3, x4)] ⊂ I

[I : x1][I : (x2, x3)] ⊂ I + x4[I : (x1, x2, x3)]

[I : x1][I : x2] ⊂ I+

(x3, x4)[I : (x1, x2)] + (x3x4)[I : x1x2] ∩ (x3[I : x1] ∩ x4[I : x2] + x3[I : x2] ∩ x4[I : x1])

This generalizes a classification for three or fewer variables in [2].

Questions

• Is there a general formula for the circuits of Sn
3, . . . , Sn

n−3?
• When can we choose a basis for TorS

•(R, k) consisting of monomial cycles?
Few monomial ideals are known to admit such a basis when n ≥ 4. Our theorems
would tell us a lot about the algebra structure of TorS

•(R, k). However, most known
classes of such ideals are already known to be Golod by other means.
• When does the vanishing of products of monomial cycles imply I is Golod?

We were able to do this in four variables, but it doesn’t hold in general for five
variables or more, for two reasons. First, even if monomial cycle products vanish,
other products may not, as the example I = (x1x3, x1x4, x2x3, x2x4, x2

5)

(x̄5e5) ∧ (x̄1e234 − x̄2e134) = x2x5e1345 − x1x5e2345

shows. Second, higher order products appear, and they may be non-zero, even if
all other products are trivial [3]. It would be interesting to find classes of ideals for
which we can answer this question positively.
• Can a similar classification be done for binomial, trinomial, . . . ?
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